Optimal Virtual Monochromatic Images for Evaluation of Normal Tissues and Head and Neck Cancer Using Dual-Energy CT.

نویسندگان

  • S Lam
  • R Gupta
  • M Levental
  • E Yu
  • H D Curtin
  • R Forghani
چکیده

BACKGROUND AND PURPOSE Dual-energy CT is not used routinely for evaluation of the head and neck, and there is no consensus on the optimal virtual monochromatic image energies for evaluating normal tissues or head and neck cancer. We performed a quantitative evaluation to determine the optimal virtual monochromatic images for visualization of normal tissues, head and neck squamous cell carcinoma, and lymphadenopathy. MATERIALS AND METHODS Dual-energy CT scans from 10 healthy patients and 30 patients with squamous cell carcinoma were evaluated at different virtual monochromatic energy levels ranging from 40 to 140 keV. The signal-to-noise ratios of muscles at 6 different levels, glands (parotid, sublingual, submandibular, and thyroid), 30 tumors, and 17 metastatic lymph nodes were determined as measures of optimal image quality. Lesion attenuation and contrast-to-noise ratios (compared with those of muscle) were evaluated to assess lesion conspicuity. RESULTS The optimal signal-to-noise ratio for all the tissues was at 65 keV (P < .0001). However, tumor attenuation (P < .0001), attenuation difference between tumor and muscles (P = .03), and lesion contrast-to-noise ratios (P < .0001) were highest at 40 keV. CONCLUSIONS The optimal image signal-to-noise ratio is at 65 keV, but tumor conspicuity compared with that of muscle is greatest at 40 keV. Optimal evaluation of the neck may be best achieved by a multiparametric approach, with 65-keV virtual monochromatic images providing the best overall image quality and targeted use of 40-keV virtual monochromatic images for tumor evaluation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clinical applications of virtual, non-contrast head images derived from dual-source, dual-energy cerebrovascular computed tomography angiography

Background: This study set out to evaluate the utility of cerebrovascular virtual non-contrast (VNC) scans. Materials and Methods: Conventional non-contrast (CNC) and dual-energy computed tomography angiography (DE-CTA) head scans were conducted on 100 subjects, of which 46 were normal, 15 had parenchymal hematomas of the brain, 13 had ischemic infarction, 22 had tumors, and 4 had calcified les...

متن کامل

Different spectral hounsfield unit curve and high-energy virtual monochromatic image characteristics of squamous cell carcinoma compared with nonossified thyroid cartilage.

BACKGROUND AND PURPOSE The attenuation of normal nonossified thyroid cartilage can be similar to that of head and neck squamous cell carcinoma on CT. We compared dual-energy CT spectral Hounsfield unit attenuation characteristics of nonossified thyroid cartilage with that of squamous cell carcinoma to determine the optimal virtual monochromatic image reconstruction energy levels for distinguish...

متن کامل

Improving Image Quality of Bronchial Arteries with Virtual Monochromatic Spectral CT Images

OBJECTIVE To evaluate the clinical value of using monochromatic images in spectral CT pulmonary angiography to improve image quality of bronchial arteries. METHODS We retrospectively analyzed the chest CT images of 38 patients who underwent contrast-enhanced spectral CT. These images included a set of 140kVp polychromatic images and the default 70keV monochromatic images. Using the standard G...

متن کامل

A novel dual energy CT-based attenuation correction method in PET/CT systems: A phantom study

  In present PET/CT scanners, PET attenuation correction is performed by relying on the information given by CT scan. In the CT-based attenuation correction methods, dual-energy technique (DECT) is the most accurate approach, which has been limited due to the increasing patient dose. In this feasibility study, we have introduced a new method that can implement dual-en...

متن کامل

Optimal Monochromatic Energy Levels in Spectral CT Pulmonary Angiography for the Evaluation of Pulmonary Embolism

BACKGROUND The aim of this study was to determine the optimal monochromatic spectral CT pulmonary angiography (sCTPA) levels to obtain the highest image quality and diagnostic confidence for pulmonary embolism detection. METHODS The Institutional Review Board of the Shanghai Jiao Tong University School of Medicine approved this study, and written informed consent was obtained from all partici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 36 8  شماره 

صفحات  -

تاریخ انتشار 2015